Curves are typical geometric objects and offer a rich and partly unexplored research field that can be discovered and re-discovered at various stages of a student’s learning path. In particular some very interesting curves resulting from physical problems or developed as a result of mathematical thought have marked the history of Physics and Mathematics. The present work puts forward a teaching proposal on Breguet’s Spiral -Breguet (1747-1823) was a Swiss watchmaker and inventor- aimed at the second three-year period of Italian Higher Secondary schools. This is a banked spiral where the terminal coil partially closes on itself, thereby ensuring a concentrical development of the spiral throughout its whole contracting-expanding cycle. The study of the curve is approached from a practical, laboratorial viewpoint. Starting from the historical and scientific background which led Breguet to the creation of a variation of the classical flat spiral, we then move on to computer mathematical modelling through the GeoGebra dynamic geometry software . The aim is to show how Mathematics is interlinked with Physics and offers the conceptual tools to solve the problem. The mathematical modelling, done using a dynamic geometry software, allows students to do a significant 'abstractive leap': the curve is not longer linked with the Physics and, without any constraints of immediate applications, become the object of the speculation and of the research. The use of GeoGebra allows for quite a different working mode compared to the classical 'pen to paper' approach because it offers the opportunity to get some practice of mathematical facts at various levels. Students indeed have the chance to work on the geometrical object constructively, exploring properties, formulating conjectures and testing them through the functions made available by the software itself. The software facilitates learning and the acquisition of mathematical knowledge in many ways, while at the same time it gives teachers the chance to introduce new learning tools and explore pathways which are seldom included in traditional learning and teaching methods.
Le curve, oggetti geometrici per eccellenza, offrono un campo ricco ed inesplorato che può essere scoperto e riscoperto a vari livelli d’età scolare; in particolare, ci sono delle curve, molto interessanti, nate da problemi fisici e da sviluppi interni al pensiero matematico, che hanno segnato per lungo tempo la storia della fisica e della matematica. Il presente contributo, pensato per il triennio della scuola secondaria superiore, espone una proposta didattica sulla spirale di Breguet (1747-1823), orologiaio e inventore svizzero, ovverosia una curva sopraelevata che chiude parzialmente su sé stessa la spira terminale, in modo tale da assicurare uno sviluppo concentrico della spirale stessa durante tutto il suo ciclo di contrazione-espansione. Lo studio della curva viene presentato in maniera laboratoriale partendo da un excursus storico-scientifico del problema fisico che ha portato Breguet alla creazione di una variante della classica spirale piana; per poi proseguire con una modellizzazione matematica al computer mediante il software di geometria dinamica GeoGebra. In tale prospettiva si vuole mostrare come la matematica interagisce con la fisica fornendo strumenti concettuali necessari per risolvere il problema; la modellizzazione matematica, effettuata con un software di geometria dinamica, consente di effettuare un salto astrattivo notevole: la curva si sgancia dalla fisica e diventa oggetto di speculazione e di ricerca in sé, al di fuori d’immediate applicazioni. Infatti, l’impiego di GeoGebra comporta un modo di lavorare sostanzialmente diverso da quello derivante dal classico approccio “carta e matita” perché consente di fare esperienza diretta, a diversi livelli, con fatti matematici; gli studenti hanno realmente la possibilità di lavorare sull’oggetto geometrico in modo costruttivo esplorando proprietà, formulando congetture mettendole alla prova anche per mezzo delle stesse funzioni presenti nel software. Tutto questo apporta dei vantaggi nell’apprendimento e nell’elaborazione delle conoscenze matematiche e al contempo fornisce la possibilità agli insegnanti di gettare uno sguardo su nuovi territori che nel normale percorso di studi rimangono pressoché inesplorati.
Spirale di Breguet con GeoGebra.
SERPE, Annarosa;
2016-01-01
Abstract
Curves are typical geometric objects and offer a rich and partly unexplored research field that can be discovered and re-discovered at various stages of a student’s learning path. In particular some very interesting curves resulting from physical problems or developed as a result of mathematical thought have marked the history of Physics and Mathematics. The present work puts forward a teaching proposal on Breguet’s Spiral -Breguet (1747-1823) was a Swiss watchmaker and inventor- aimed at the second three-year period of Italian Higher Secondary schools. This is a banked spiral where the terminal coil partially closes on itself, thereby ensuring a concentrical development of the spiral throughout its whole contracting-expanding cycle. The study of the curve is approached from a practical, laboratorial viewpoint. Starting from the historical and scientific background which led Breguet to the creation of a variation of the classical flat spiral, we then move on to computer mathematical modelling through the GeoGebra dynamic geometry software . The aim is to show how Mathematics is interlinked with Physics and offers the conceptual tools to solve the problem. The mathematical modelling, done using a dynamic geometry software, allows students to do a significant 'abstractive leap': the curve is not longer linked with the Physics and, without any constraints of immediate applications, become the object of the speculation and of the research. The use of GeoGebra allows for quite a different working mode compared to the classical 'pen to paper' approach because it offers the opportunity to get some practice of mathematical facts at various levels. Students indeed have the chance to work on the geometrical object constructively, exploring properties, formulating conjectures and testing them through the functions made available by the software itself. The software facilitates learning and the acquisition of mathematical knowledge in many ways, while at the same time it gives teachers the chance to introduce new learning tools and explore pathways which are seldom included in traditional learning and teaching methods.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.