A good-working balance between simplicity and reliability in assessing seismic slope stability is represented by displacement-based methods, in which the effects of deformability and ductility can be either decoupled or coupled in the dynamic analyses. In this paper, a 1D lumped mass “stick-slip” model is developed, accounting for soil heterogeneity and non-linear behaviour, with a base sliding mechanism at a potential rupture surface. The results of the preliminary calibration show a good agreement with frequency-domain site response analysis in no-slip conditions. The comparison with rigid sliding block analyses and with the decoupled approach proves that the stick-slip procedure can result increasingly unconservative for soft soils and deep sliding depths.
Prediction of seismic slope displacements by dynamic stick-slip analyses
AUSILIO, Ernesto;
2008-01-01
Abstract
A good-working balance between simplicity and reliability in assessing seismic slope stability is represented by displacement-based methods, in which the effects of deformability and ductility can be either decoupled or coupled in the dynamic analyses. In this paper, a 1D lumped mass “stick-slip” model is developed, accounting for soil heterogeneity and non-linear behaviour, with a base sliding mechanism at a potential rupture surface. The results of the preliminary calibration show a good agreement with frequency-domain site response analysis in no-slip conditions. The comparison with rigid sliding block analyses and with the decoupled approach proves that the stick-slip procedure can result increasingly unconservative for soft soils and deep sliding depths.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.