The determination of areas exposed to be interested by new eruptive events in volcanic regions is crucial for diminishing consequences in terms of human causalities and damages of material properties. Nevertheless, urbanized areas, cultural heritage sites or even important infrastructures, such as power plants, hospitals and schools can be protected by diverting the flow towards lower interest regions. This paper describes the application of Parallel Genetic Algorithms for optimizing earth barriers construction by morphological evolution, to divert a case study lava flow that is simulated by the numerical Cellular Automata model Sciara-fv2 at Mt Etna (Sicily, Italy). In particular, the application regards the optimization of the position, orientation and extension of an earth barrier built to protect Rifugio Sapienza, a touristic facility located near the summit of the volcano. The study has produced extremely positive results and represents, to our knowledge, the first application of morphological evolution for lava flow mitigation. Among different alternatives generated by the Genetic Algorithm, an interesting scenario consists of an earthen barrier solution (with a length of 225 m, average height of 25 m, base width of 10 m and volume of 56180 m3) which completely deviates the flow avoiding that the lava reaches the inhabited area.

A new methodology for mitigation of lava flow invasion hazard morphological evolution of protective works by parallel genetic algorithms

Spataro W;D'AMBROSIO, Donato;
2013

Abstract

The determination of areas exposed to be interested by new eruptive events in volcanic regions is crucial for diminishing consequences in terms of human causalities and damages of material properties. Nevertheless, urbanized areas, cultural heritage sites or even important infrastructures, such as power plants, hospitals and schools can be protected by diverting the flow towards lower interest regions. This paper describes the application of Parallel Genetic Algorithms for optimizing earth barriers construction by morphological evolution, to divert a case study lava flow that is simulated by the numerical Cellular Automata model Sciara-fv2 at Mt Etna (Sicily, Italy). In particular, the application regards the optimization of the position, orientation and extension of an earth barrier built to protect Rifugio Sapienza, a touristic facility located near the summit of the volcano. The study has produced extremely positive results and represents, to our knowledge, the first application of morphological evolution for lava flow mitigation. Among different alternatives generated by the Genetic Algorithm, an interesting scenario consists of an earthen barrier solution (with a length of 225 m, average height of 25 m, base width of 10 m and volume of 56180 m3) which completely deviates the flow avoiding that the lava reaches the inhabited area.
978-989856577-8
Cellular Automata; Evolutionary Computation; Genetic Algorithms; Lava Flow Control; Lava Flow Simulation; Parallel Computing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/187431
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact