Increasing interest in renewable energy sources makes attractive the exploitation of many small power hydraulic resources (micro-hydro – less than 100 kW). However, the high cost of hydraulic turbines hinders the actual realization of micro-hydro plants. An alternative cheaper solution could be to replace the turbine with a reverse-mode centrifugal pump, developing therefore a pump as turbine (PAT) system. Unfortunately, although a wide number of centrifugal pumps are commercially available for micro-hydro engineering plant, manufacturers do not provide information regarding the performance of centrifugal pumps in turbine mode. In this paper, a simple method based on a one-dimensional numerical code is presented for deriving the turbine efficiency of commercially available centrifugal pumps. The code estimates a sizing of the component using information such as impeller diameter, specific speed, head and flow rate at pump BEP, machine overall dimension which are provided in manufacturer catalogues, to deduce geometrical parameters of the machine, calculating the losses and thus determining PAT performances. The method was validated by a comparison of the predicted characteristic curves with some experimental measurements available on PATs working in a range of specific speed (Head in meters and flow rate in m3 /s) from 9 to 65. The numerical code calculations effectively predicted the measured efficiency of PATs. At BEP, the efficiency was estimated with a relative error of ±10% which is a value much lower than one obtained by using the available in literature correlations. A prediction within this error range is generally accepted for this kind of application.
A one-dimensional numerical model for calculating the efficiency of Pumps As Turbines for implementation in micro-hydro power plants
AMELIO, Mario;BARBARELLI S.
2004-01-01
Abstract
Increasing interest in renewable energy sources makes attractive the exploitation of many small power hydraulic resources (micro-hydro – less than 100 kW). However, the high cost of hydraulic turbines hinders the actual realization of micro-hydro plants. An alternative cheaper solution could be to replace the turbine with a reverse-mode centrifugal pump, developing therefore a pump as turbine (PAT) system. Unfortunately, although a wide number of centrifugal pumps are commercially available for micro-hydro engineering plant, manufacturers do not provide information regarding the performance of centrifugal pumps in turbine mode. In this paper, a simple method based on a one-dimensional numerical code is presented for deriving the turbine efficiency of commercially available centrifugal pumps. The code estimates a sizing of the component using information such as impeller diameter, specific speed, head and flow rate at pump BEP, machine overall dimension which are provided in manufacturer catalogues, to deduce geometrical parameters of the machine, calculating the losses and thus determining PAT performances. The method was validated by a comparison of the predicted characteristic curves with some experimental measurements available on PATs working in a range of specific speed (Head in meters and flow rate in m3 /s) from 9 to 65. The numerical code calculations effectively predicted the measured efficiency of PATs. At BEP, the efficiency was estimated with a relative error of ±10% which is a value much lower than one obtained by using the available in literature correlations. A prediction within this error range is generally accepted for this kind of application.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.