We present on overview of the STAR project (Southern european Thomson source for Applied Research), in progress at the Univ. of Calabria (Italy) aimed at the construction of an advanced Thomson source of monochromatic tunable, ps-long, polarized X-ray beams, ranging from 20 to 140 keV. The project is pursued in collaboration among: Univ. della Calabria, CNISM, INFN and Sincrotrone Trieste. The X-rays will be devoted to experiments of matter science, cultural heritage, advanced radiological imaging with micro-tomography capabilities. One S-band RF Gun at 100 Hz will produce electron bunches boosted up to 60 MeV by a 3m long S-band TW cavity. A dogleg will bring the beam on a parallel line, shielding the X-ray line from the background radiation due to Linac dark current. The peculiarity of the machine is the ability to produce high quality electron beams, with low emittance and high stability, allowing to reach spot sizes around 15-20 microns, with a pointing jitter of the order of a few microns. The collision laser will be based on a Yb:Yag 100 Hz high quality laser system, synchronized to an external photo-cathode laser and to the RF system to better than 1 ps time jitter.

The STAR project

AGOSTINO, Raffaele Giuseppe;PACE, Calogero;
2014-01-01

Abstract

We present on overview of the STAR project (Southern european Thomson source for Applied Research), in progress at the Univ. of Calabria (Italy) aimed at the construction of an advanced Thomson source of monochromatic tunable, ps-long, polarized X-ray beams, ranging from 20 to 140 keV. The project is pursued in collaboration among: Univ. della Calabria, CNISM, INFN and Sincrotrone Trieste. The X-rays will be devoted to experiments of matter science, cultural heritage, advanced radiological imaging with micro-tomography capabilities. One S-band RF Gun at 100 Hz will produce electron bunches boosted up to 60 MeV by a 3m long S-band TW cavity. A dogleg will bring the beam on a parallel line, shielding the X-ray line from the background radiation due to Linac dark current. The peculiarity of the machine is the ability to produce high quality electron beams, with low emittance and high stability, allowing to reach spot sizes around 15-20 microns, with a pointing jitter of the order of a few microns. The collision laser will be based on a Yb:Yag 100 Hz high quality laser system, synchronized to an external photo-cathode laser and to the RF system to better than 1 ps time jitter.
2014
978-3-95450-132-8
X-ray infrastructure design
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/188168
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact