A new technique for constructing multi-dimensional histograms is proposed. This technique first invokes a density-based clustering algorithm to locate dense and sparse regions of the input data. Then the data distribution inside each of these regions is summarized by partitioning it into non-overlapping blocks laid onto a grid. The granularity of this grid is chosen depending on the underlying data distribution: the more homogeneous the data, the coarser the grid. Our approach is compared with state-of-the-art histograms on both synthetic and real-life data and is shown to be more effective. © Springer-Verlag Berlin Heidelberg 2005.

Clustering-based histograms for multi-dimensional data

Furfaro, Filippo;Sirangelo, Cristina
2005-01-01

Abstract

A new technique for constructing multi-dimensional histograms is proposed. This technique first invokes a density-based clustering algorithm to locate dense and sparse regions of the input data. Then the data distribution inside each of these regions is summarized by partitioning it into non-overlapping blocks laid onto a grid. The granularity of this grid is chosen depending on the underlying data distribution: the more homogeneous the data, the coarser the grid. Our approach is compared with state-of-the-art histograms on both synthetic and real-life data and is shown to be more effective. © Springer-Verlag Berlin Heidelberg 2005.
2005
Theoretical Computer Science; Computer Science (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/264110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact