The Hammerstein model of a nonlinear systems can be efficiently identified by means of a technique based on pulse compression. The procedure relies on the properties of the exponential chirps, adopted as excitation signals. The present paper proposes to include the initial phase of the chirp, together with its time duration and frequency extremes, among the parameters to design the excitation signal. Considering this widened set of design parameters, we identify the constraints that the excitation signal must meet to carry out an accurate identification. The paper shows that introducing the initial phase as further degree of freedom, adds flexibility to the design process and allows for the use of much shorted chirp signals, making measurements faster and reliable. The experimental results reported demonstrate the validity of the constraints identified and show that, choosing appropriate combinations of the parameters, very short chirp accomplish the phase constraint needed for an accurate modelling of the non-linear system.

Chirp design in a pulse compression procedure for the identification of non-linear systems

Laureti, Stefano;Tomasello, Riccardo;Ricci, Marco
2017-01-01

Abstract

The Hammerstein model of a nonlinear systems can be efficiently identified by means of a technique based on pulse compression. The procedure relies on the properties of the exponential chirps, adopted as excitation signals. The present paper proposes to include the initial phase of the chirp, together with its time duration and frequency extremes, among the parameters to design the excitation signal. Considering this widened set of design parameters, we identify the constraints that the excitation signal must meet to carry out an accurate identification. The paper shows that introducing the initial phase as further degree of freedom, adds flexibility to the design process and allows for the use of much shorted chirp signals, making measurements faster and reliable. The experimental results reported demonstrate the validity of the constraints identified and show that, choosing appropriate combinations of the parameters, very short chirp accomplish the phase constraint needed for an accurate modelling of the non-linear system.
2017
9781509050529
chirp; nonlinear systems; pulse compression methods; system modeling and identification; Hardware and Architecture; Electrical and Electronic Engineering; Modeling and Simulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/266461
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 2
social impact