With the increasing frequency of traffic accidents, traffic safety has attracted attention of the researchers. Most of the traffic accidents are related to the driver’s risky behavior or some improper driving habits, such as leaning against the window/door, picking up things, or looking backwards when driving at high speed. In this paper, to detect such risky behaviors, we propose a decision tree for classification that recognizes four kinds of driving behaviors: normal driving, looking backwards, leaning against the window and picking up things. A time series of pressure data were measured from a mat with 2 × 2 pressure sensors which are distributed on the driver seat. Regarding the preprocessing phase, a digital filter is used for noise reduction. Results show that our method can achieve an average recognition rate of 88.25%.

Risk driving behaviors detection using pressure cushion

Gravina, Raffaele;Fortino, Giancarlo
2018-01-01

Abstract

With the increasing frequency of traffic accidents, traffic safety has attracted attention of the researchers. Most of the traffic accidents are related to the driver’s risky behavior or some improper driving habits, such as leaning against the window/door, picking up things, or looking backwards when driving at high speed. In this paper, to detect such risky behaviors, we propose a decision tree for classification that recognizes four kinds of driving behaviors: normal driving, looking backwards, leaning against the window and picking up things. A time series of pressure data were measured from a mat with 2 × 2 pressure sensors which are distributed on the driver seat. Regarding the preprocessing phase, a digital filter is used for noise reduction. Results show that our method can achieve an average recognition rate of 88.25%.
2018
9783319977942
Behavior recognition; Posture detection; Pressure sensor; Risk driving; Smart cushion; Theoretical Computer Science; Computer Science (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/289755
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact