The contributions of scalars and fermions to the null polygonal bosonic Wilson loops/gluon MHV scattering amplitudes in N = 4 SYM are considered. We first examine the re-summation of scalars at strong coupling. Then, we disentangle the form of the fermion contribution and show its strong coupling expansion. In particular, we derive the leading order with the appearance of a fermion-anti-fermion bound state first and then effective multiple bound states thereof. This reproduces the string minimal area result and also applies to the Nekrasov instanton partition function Z of the N = 2 theories. Especially, in the latter case the method appears to be suitable for a systematic expansion.

N = 4 Polygonal Wilson Loops: Fermions

Rossi, Marco
2018-01-01

Abstract

The contributions of scalars and fermions to the null polygonal bosonic Wilson loops/gluon MHV scattering amplitudes in N = 4 SYM are considered. We first examine the re-summation of scalars at strong coupling. Then, we disentangle the form of the fermion contribution and show its strong coupling expansion. In particular, we derive the leading order with the appearance of a fermion-anti-fermion bound state first and then effective multiple bound states thereof. This reproduces the string minimal area result and also applies to the Nekrasov instanton partition function Z of the N = 2 theories. Especially, in the latter case the method appears to be suitable for a systematic expansion.
2018
AdS/CFT Correspondence; Form factors and scattering matrix for integrable theories; N=2 SYM partition functions; N=4 SYM scattering amplitudes; Mathematics (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/290721
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact