Braid groups are an important and flexible tool used in several areas of science, such as Knot Theory (Alexander's theorem), Mathematical Physics (Yang-Baxter's equation) and Algebraic Geometry (monodromy invariants). In this note we will focus on their algebraic-geometric aspects, explaining how the representation theory of higher genus braid groups can be used to produce interesting examples of projective surfaces defined over the field of complex numbers.
Representations of braid groups and construction of projective surfaces
Polizzi F.
2019-01-01
Abstract
Braid groups are an important and flexible tool used in several areas of science, such as Knot Theory (Alexander's theorem), Mathematical Physics (Yang-Baxter's equation) and Algebraic Geometry (monodromy invariants). In this note we will focus on their algebraic-geometric aspects, explaining how the representation theory of higher genus braid groups can be used to produce interesting examples of projective surfaces defined over the field of complex numbers.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.