In this contribution, we aim to illustrate how quantum work statistics can be used as a tool in order to gain insight on the universal features of non-equilibrium many- body systems. Focusing on the two-point measurement approach to work, we first outline the formalism and show how the related irreversible entropy production may be defined for a unitary process. We then explore the physics of sudden quenches from the point of view of work statistics and show how the characteristic function of work can be expressed as the partition function of a corresponding classical sta- tistical physics problem in a film geometry. Connections to the concept of fidelity susceptibility are explored along with the corresponding universal critical scaling. We also review how large deviation theory applied to quantum work statistics gives furtherinsighttouniversalproperties.Thequantum-to-classicalmappingturnsoutto have close connections with the historical problem of orthogonality catastrophe: we therefore discuss how this relationship may be exploited in order to experimentally extract quantum work statistics in many-body systems.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | The Role of Quantum Work Statistics in Many-Body Physics |
Autori: | |
Data di pubblicazione: | 2019 |
Serie: | |
Handle: | http://hdl.handle.net/20.500.11770/299341 |
ISBN: | 978-3-319-99045-3 978-3-319-99046-0 |
Appare nelle tipologie: | 2.1 Contributo in volume (Capitolo o Saggio) |