Respiratory diseases are among the most common causes of severe illness and death worldwide. Prevention and early diagnosis are essential to limit or even reverse the trend that characterizes the diffusion of such diseases. In this regard, the development of advanced computational tools for the analysis of respiratory auscultation sounds can become a game changer for detecting disease-related anomalies, or diseases themselves. In this work, we propose a novel learning framework for respiratory auscultation sound data. Our approach combines state-of-the-art feature extraction techniques and advanced deep-neural-network architectures. Remarkably, to the best of our knowledge, we are the first to model a recurrent-neural-network based learning framework to support the clinician in detecting respiratory diseases, at either level of abnormal sounds or pathology classes. Results obtained on the ICBHI benchmark dataset show that our approach outperforms competing methods on both anomaly-driven and pathology-driven prediction tasks, thus advancing the state-of-the-art in respiratory disease analysis.

Deep auscultation: Predicting respiratory anomalies and diseases via recurrent neural networks

Perna Diego;Tagarelli Andrea
2019-01-01

Abstract

Respiratory diseases are among the most common causes of severe illness and death worldwide. Prevention and early diagnosis are essential to limit or even reverse the trend that characterizes the diffusion of such diseases. In this regard, the development of advanced computational tools for the analysis of respiratory auscultation sounds can become a game changer for detecting disease-related anomalies, or diseases themselves. In this work, we propose a novel learning framework for respiratory auscultation sound data. Our approach combines state-of-the-art feature extraction techniques and advanced deep-neural-network architectures. Remarkably, to the best of our knowledge, we are the first to model a recurrent-neural-network based learning framework to support the clinician in detecting respiratory diseases, at either level of abnormal sounds or pathology classes. Results obtained on the ICBHI benchmark dataset show that our approach outperforms competing methods on both anomaly-driven and pathology-driven prediction tasks, thus advancing the state-of-the-art in respiratory disease analysis.
2019
978-1-7281-2286-1
Deep learning; MFCCs; Respiratory sound data; Pulmonary diseases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/303120
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? ND
social impact