The need of scattered data interpolation methods in the multivariate framework and, in particular, in the trivariate case, motivates the generalization of the fast algorithm for triangular Shepard method. A block-based partitioning structure procedure was already applied to make the method very fast in the bivariate setting. Here the searching algorithm is extended, it allows to partition the domain and nodes in cubic blocks and to find the nearest neighbor points that need to be used in the tetrahedral Shepard interpolation.

A 3D Efficient Procedure for Shepard Interpolants on Tetrahedra

Dell'Accio F.;Di Tommaso F.
2020-01-01

Abstract

The need of scattered data interpolation methods in the multivariate framework and, in particular, in the trivariate case, motivates the generalization of the fast algorithm for triangular Shepard method. A block-based partitioning structure procedure was already applied to make the method very fast in the bivariate setting. Here the searching algorithm is extended, it allows to partition the domain and nodes in cubic blocks and to find the nearest neighbor points that need to be used in the tetrahedral Shepard interpolation.
2020
978-3-030-39080-8
978-3-030-39081-5
Approximation algorithms; Fast algorithms; Scattered data interpolation; Tetrahedral Shepard operator
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/303252
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact