The problem of reconstruction of an unknown function from a finite number of given scattered data is well known and well studied in approximation theory. The methods developed with this goal are several and are successfully applied in different contexts. Due to the need of fast and accurate approximation methods, in this paper we numerically compare some variation of the Shepard method obtained by considering different basis functions.

Comparison of Shepard’s Like Methods with Different Basis Functions

Dell'Accio F.;Di Tommaso F.;
2020

Abstract

The problem of reconstruction of an unknown function from a finite number of given scattered data is well known and well studied in approximation theory. The methods developed with this goal are several and are successfully applied in different contexts. Due to the need of fast and accurate approximation methods, in this paper we numerically compare some variation of the Shepard method obtained by considering different basis functions.
978-3-030-39080-8
978-3-030-39081-5
Interpolation; Quasi-interpolation; Shepard methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/303310
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact