In this contribution, an interpolation problem using radial basis functions is considered. A recently proposed approach for the search of the optimal value of the shape parameter is studied. The approach consists of using global optimization algorithms to minimize the error function obtained using a leave-one-out cross validation (LOOCV) technique, which is commonly used for solving machine learning problems. In this paper, the proposed approach is studied experimentally on classes of randomly generated test problems using the GKLS-generator, which is widely used for testing global optimization algorithms. The experimental study on classes of randomly generated test problems is very important from the practical point of view, since results show the behavior of the algorithms for solving not a single test problem, but the whole class with controllable difficulty, which is the main property of the GKLS-generator. The obtained results are relevant, since the experiments have been carried out on 200 randomized test problems, and show that the algorithms are efficient for solving difficult real-life problems demonstrating a promising behavior.

An Experimental Study of Univariate Global Optimization Algorithms for Finding the Shape Parameter in Radial Basis Functions

Mukhametzhanov marat.
;
Cavoretto R.;De Rossi A.
2020-01-01

Abstract

In this contribution, an interpolation problem using radial basis functions is considered. A recently proposed approach for the search of the optimal value of the shape parameter is studied. The approach consists of using global optimization algorithms to minimize the error function obtained using a leave-one-out cross validation (LOOCV) technique, which is commonly used for solving machine learning problems. In this paper, the proposed approach is studied experimentally on classes of randomly generated test problems using the GKLS-generator, which is widely used for testing global optimization algorithms. The experimental study on classes of randomly generated test problems is very important from the practical point of view, since results show the behavior of the algorithms for solving not a single test problem, but the whole class with controllable difficulty, which is the main property of the GKLS-generator. The obtained results are relevant, since the experiments have been carried out on 200 randomized test problems, and show that the algorithms are efficient for solving difficult real-life problems demonstrating a promising behavior.
2020
978-3-030-38602-3
978-3-030-38603-0
Global optimization algorithms; Radial basis functions; Shape parameter
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/303382
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact