This paper presents a framework for analyzing and predicting the performances of a business process, based on historical data gathered during its past enactments. The framework hinges on an inductive-learning technique for discovering a special kind of predictive process models, which can support the run-time prediction of some performance measure (e.g., the remaining processing time or a risk indicator) for an ongoing process instance, based on a modular representation of the process, where major performance-relevant variants of it are equipped with different regression models, and discriminated through context variables. The technique is an original combination of different data mining methods (namely, non-parametric regression methods and a probabilistic trace clustering scheme) and ad hoc data transformation mechanisms, meant to bring the log traces to suitable level of abstraction. In order to overcome the severe scalability limitations of current solutions in the literature, and make our approach really suitable for large logs, both the computation of the trace clusters and of the clusters’ predictors are implemented in a parallel and distributed manner, on top of a cloudbased service-oriented infrastructure. Tests on a real-life log confirmed the validity of the proposed approach, in terms of both effectiveness and scalability.

A cloud-based prediction framework for analyzing business process performances

Cesario E.;
2016-01-01

Abstract

This paper presents a framework for analyzing and predicting the performances of a business process, based on historical data gathered during its past enactments. The framework hinges on an inductive-learning technique for discovering a special kind of predictive process models, which can support the run-time prediction of some performance measure (e.g., the remaining processing time or a risk indicator) for an ongoing process instance, based on a modular representation of the process, where major performance-relevant variants of it are equipped with different regression models, and discriminated through context variables. The technique is an original combination of different data mining methods (namely, non-parametric regression methods and a probabilistic trace clustering scheme) and ad hoc data transformation mechanisms, meant to bring the log traces to suitable level of abstraction. In order to overcome the severe scalability limitations of current solutions in the literature, and make our approach really suitable for large logs, both the computation of the trace clusters and of the clusters’ predictors are implemented in a parallel and distributed manner, on top of a cloudbased service-oriented infrastructure. Tests on a real-life log confirmed the validity of the proposed approach, in terms of both effectiveness and scalability.
2016
978-3-319-45506-8
978-3-319-45507-5
BPM; Cloud/grid computing; Data mining; Prediction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/303519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 10
social impact