In the present paper, the fatigue behaviour and the phase transition mechanisms of an equiatomic pseudo-elastic NiTi Shape Memory Alloy are examined by means of tensile cyclic tests (up to 100 loading cycles). More precisely, miniaturised dog-bone specimens are tested by using a customised testing machine, which allows in situ X-Ray diffraction (XRD) analyses in order to measure the contents of both austenite and martensite phase. On the basis of such experimental results in terms of martensite content, an analytical model is here proposed to correlate the stress-strain relationship to the phase transition mechanisms. Finally, analytical and experimental results are compared in terms of stress-strain relationship.

FATIGUE BEHAVIOUR OF A SHAPE MEMORY ALLOY

RONCHEI, Camilla;
2017

Abstract

In the present paper, the fatigue behaviour and the phase transition mechanisms of an equiatomic pseudo-elastic NiTi Shape Memory Alloy are examined by means of tensile cyclic tests (up to 100 loading cycles). More precisely, miniaturised dog-bone specimens are tested by using a customised testing machine, which allows in situ X-Ray diffraction (XRD) analyses in order to measure the contents of both austenite and martensite phase. On the basis of such experimental results in terms of martensite content, an analytical model is here proposed to correlate the stress-strain relationship to the phase transition mechanisms. Finally, analytical and experimental results are compared in terms of stress-strain relationship.
fatigue behaviour; phase transition mechanisms; shape memory alloy; tensile cyclic test; x-ray diffraction analyses
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/304681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact