This paper proposes and experimentally assesses a machine learning approach for supporting the effective and efficient generation of synthetic memory reference traces for a wide range of application scenarios. The proposed approach makes a nice use of extended hierarchical Markov models

An Effective and Efficient Approach for Supporting the Generation of Synthetic Memory Reference Traces via Hierarchical Hidden/Non-Hidden Markov Models

Alfredo Cuzzocrea;
2018

Abstract

This paper proposes and experimentally assesses a machine learning approach for supporting the effective and efficient generation of synthetic memory reference traces for a wide range of application scenarios. The proposed approach makes a nice use of extended hierarchical Markov models
machine learning
hierarchical Markov models
Hiddenl Markov models
generation of synthetic memory reference
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/312890
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact