The recent widespread pandemic of COVID-19 has put tremendous pressure on the healthcare system. The deployment of telehealth technology is crucial in solving this problem when patients are mildly ill and need to self-isolate at home or in a specific location. This paper proposes using a single radar sensor to continuously contact-less monitor the patients' vital signals in their daily lives. We use edge computing to handle high-priory tasks and combined cloud infrastructure for further process and storage to provide monitoring and telehealth services. A case study is presented to show how the approach can continuously monitor and recognize high-risk diseases and abnormal activity (e.g., sleep apnea). While an accident occurs, the system could provide fast and accurate emergency services. The work has been compared with a good standard. And the experimental results show that the proposed approach for heart rate (HR) and respiratory rate (RR) detection achieved a Mean Absolute Error (MAE) ± Standard Deviation of Absolute Error (SDAE) of 0.09±1.43 bpm and 0.23±3.23 bpm, respectively. This indicates the radar sensor can provide a high recognition accuracy to meet the requirements for a range of cardiopulmonary function monitoring. This kind of telemedicine service facilitates monitoring the self-isolated subjects to detect and recognize human physical and physiological activities.
A UWB Radar-based Approach of Detecting Vital Signals
Li Q.
;Gravina R.;Fortino G.
2021-01-01
Abstract
The recent widespread pandemic of COVID-19 has put tremendous pressure on the healthcare system. The deployment of telehealth technology is crucial in solving this problem when patients are mildly ill and need to self-isolate at home or in a specific location. This paper proposes using a single radar sensor to continuously contact-less monitor the patients' vital signals in their daily lives. We use edge computing to handle high-priory tasks and combined cloud infrastructure for further process and storage to provide monitoring and telehealth services. A case study is presented to show how the approach can continuously monitor and recognize high-risk diseases and abnormal activity (e.g., sleep apnea). While an accident occurs, the system could provide fast and accurate emergency services. The work has been compared with a good standard. And the experimental results show that the proposed approach for heart rate (HR) and respiratory rate (RR) detection achieved a Mean Absolute Error (MAE) ± Standard Deviation of Absolute Error (SDAE) of 0.09±1.43 bpm and 0.23±3.23 bpm, respectively. This indicates the radar sensor can provide a high recognition accuracy to meet the requirements for a range of cardiopulmonary function monitoring. This kind of telemedicine service facilitates monitoring the self-isolated subjects to detect and recognize human physical and physiological activities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.