A symbolic mathematical approach for the rapid early phase developing of finite elements is proposed. The algebraic manipulator adopted is MATLAB® and the applicative context is the analysis of hyperelastic solids or structures under the hypothesis of finite deformation kinematics. The work has been finalized through the production, in an object-oriented programming style, of three MATLAB® classes implementing a truss element, a tetrahedral element and plane element. The approach proposed, starting from the mathematical formulation and finishing with the code implementation, is described and its effectiveness, in terms of minimization of the gap between the theoretical formulation and its actual implementation, is highlighted.
A MATLAB-based symbolic approach for the quick developing of nonlinear solid mechanics finite elements
A. Bilotta
2020-01-01
Abstract
A symbolic mathematical approach for the rapid early phase developing of finite elements is proposed. The algebraic manipulator adopted is MATLAB® and the applicative context is the analysis of hyperelastic solids or structures under the hypothesis of finite deformation kinematics. The work has been finalized through the production, in an object-oriented programming style, of three MATLAB® classes implementing a truss element, a tetrahedral element and plane element. The approach proposed, starting from the mathematical formulation and finishing with the code implementation, is described and its effectiveness, in terms of minimization of the gap between the theoretical formulation and its actual implementation, is highlighted.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.