Community deception tackles the following problem: given a target community C inside a network G and a budget of updates β (e.g., edge removal and additions), what is the best way (i.e., optimization of some function ϕG(C) ) to perform such updates in a way that C can escape to a detector D (i.e., a community detection algorithm)? This paper aims at: (i) presenting an analysis of the state-of-the-art deception techniques; (ii) evaluating state-of-the-art deception techniques: (iii) making available a library of techniques to practitioners and researchers.

Community Deception in Networks: Where We Are and Where We Should Go

Fionda V.;Pirro G.
2022-01-01

Abstract

Community deception tackles the following problem: given a target community C inside a network G and a budget of updates β (e.g., edge removal and additions), what is the best way (i.e., optimization of some function ϕG(C) ) to perform such updates in a way that C can escape to a detector D (i.e., a community detection algorithm)? This paper aims at: (i) presenting an analysis of the state-of-the-art deception techniques; (ii) evaluating state-of-the-art deception techniques: (iii) making available a library of techniques to practitioners and researchers.
2022
978-3-030-93412-5
978-3-030-93413-2
Community deception
Community hiding
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/328748
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact