The combination of ultrasound and microbubbles allows treatment of indications that would be impossible or too risk adverse with conventional surgery. During treatment, subharmonic and ultraharmonic components that can only be generated from microbubbles are of great interest for intraoperative monitoring. However, the microbubble emissions are several orders of magnitude lower in power compared to that of the fundamental frequency component from the ultrasound applicator, resulting in a low signal-to-noise ratio (SNR) for monitoring. A 3D acoustic metamaterial (AMM) immersed in water is proposed for suppressing unwanted ultrasound waves, which allows the improved sensitivity for detecting weak microbubble emissions. Numerically, the importance of shear waves on the AMM transfer properties is highlighted, though only longitudinal ultrasound waves are transmitted through water. Experimentally, the design is implemented in titanium using additive manufacturing, with an attenuation level of 40 dB at the fundamental frequency. Consequently, the application of the AMM efficiently improves the SNR for subharmonic and ultraharmonic microbubble emissions by 11.8 and 11.9 dB, respectively. The subharmonic components originally overwhelmed by noise are recovered. This is the first time that AMMs have been applied to passive acoustic monitoring and this work stands to improve treatment outcomes from cavitation-mediated focused ultrasound therapy. © 2021 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH

A Metallic Additively Manufactured Metamaterial for Enhanced Monitoring of Acoustic Cavitation-Based Therapeutic Ultrasound

Laureti, S.;Ricci, M.;
2021-01-01

Abstract

The combination of ultrasound and microbubbles allows treatment of indications that would be impossible or too risk adverse with conventional surgery. During treatment, subharmonic and ultraharmonic components that can only be generated from microbubbles are of great interest for intraoperative monitoring. However, the microbubble emissions are several orders of magnitude lower in power compared to that of the fundamental frequency component from the ultrasound applicator, resulting in a low signal-to-noise ratio (SNR) for monitoring. A 3D acoustic metamaterial (AMM) immersed in water is proposed for suppressing unwanted ultrasound waves, which allows the improved sensitivity for detecting weak microbubble emissions. Numerically, the importance of shear waves on the AMM transfer properties is highlighted, though only longitudinal ultrasound waves are transmitted through water. Experimentally, the design is implemented in titanium using additive manufacturing, with an attenuation level of 40 dB at the fundamental frequency. Consequently, the application of the AMM efficiently improves the SNR for subharmonic and ultraharmonic microbubble emissions by 11.8 and 11.9 dB, respectively. The subharmonic components originally overwhelmed by noise are recovered. This is the first time that AMMs have been applied to passive acoustic monitoring and this work stands to improve treatment outcomes from cavitation-mediated focused ultrasound therapy. © 2021 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/331308
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact