We study multiphoton absorption-induced damages to standard silica multimode optical fibers, induced by means of femtosecond infrared laser beams. During the damaging process, the dynamics of beam propagation turns out to non-trivially evolve over a time scale of several hours. Such a long term evolution produces an irreversible drop of the optical transmission, which is accompanied by a drastic change of the output supercontinuum spectrum. A microscopic analysis of the damages was carried out by means of both optical microscopy and absorption-contrast computed X-ray tomography. This has permitted us to obtain information about the sign of the refractive index variation which is induced by the optical breakdown. Our results will find application in a wide array of emerging technologies employing high-power fiber optic beams, such as fiber lasers and micromachining.
Laser-induced damages in silica multimode optical fibers
Ferraro M.;Crocco M. C.;Formoso V.;Agostino R. G.;Barberi R.;De Luca A.;
2022-01-01
Abstract
We study multiphoton absorption-induced damages to standard silica multimode optical fibers, induced by means of femtosecond infrared laser beams. During the damaging process, the dynamics of beam propagation turns out to non-trivially evolve over a time scale of several hours. Such a long term evolution produces an irreversible drop of the optical transmission, which is accompanied by a drastic change of the output supercontinuum spectrum. A microscopic analysis of the damages was carried out by means of both optical microscopy and absorption-contrast computed X-ray tomography. This has permitted us to obtain information about the sign of the refractive index variation which is induced by the optical breakdown. Our results will find application in a wide array of emerging technologies employing high-power fiber optic beams, such as fiber lasers and micromachining.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.