An efficient design of geotechnical systems is crucial to ensure the functionality of a transportation network after the occurrence of an earthquake. This paper illustrates the preliminary results of a novel methodology aimed at identifying geotechnical systems characterized by an unsatisfactory seismic performance, resulting in a compromised functionality of the overall network. To illustrate its potentialities, the presented framework is applied to an example case study. Starting from a scenario ground motion map, the potential damage to each geotechnical system (retaining walls) is quantified through ad-hoc generated fragility curves. Existing damage scales are exploited to evaluate the loss of serviceability. Information on partial or full road closures is implemented as part of a typical transportation engineering framework. Such framework is used to estimate variations in the performance of the transportation network by means of specific indicators (e.g., active accessibilities and path generalized costs). The analysis of these indexes is used for the evaluation of the effects of the functionality loss, and of the resulting actions, on the general performance of the transportation network. Thanks to its versatility, the proposed framework can be applied to any road network and geotechnical system.

Influence of the Seismic Performance of Geotechnical Systems on the Resilience of a Road Network

Zimmaro, Paolo;
2023-01-01

Abstract

An efficient design of geotechnical systems is crucial to ensure the functionality of a transportation network after the occurrence of an earthquake. This paper illustrates the preliminary results of a novel methodology aimed at identifying geotechnical systems characterized by an unsatisfactory seismic performance, resulting in a compromised functionality of the overall network. To illustrate its potentialities, the presented framework is applied to an example case study. Starting from a scenario ground motion map, the potential damage to each geotechnical system (retaining walls) is quantified through ad-hoc generated fragility curves. Existing damage scales are exploited to evaluate the loss of serviceability. Information on partial or full road closures is implemented as part of a typical transportation engineering framework. Such framework is used to estimate variations in the performance of the transportation network by means of specific indicators (e.g., active accessibilities and path generalized costs). The analysis of these indexes is used for the evaluation of the effects of the functionality loss, and of the resulting actions, on the general performance of the transportation network. Thanks to its versatility, the proposed framework can be applied to any road network and geotechnical system.
2023
978-3-031-34760-3
978-3-031-34761-0
geotechnical systems · fragility curve · seismic resilience · road infrastructure · transportation networks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/353017
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact