This paper proposes an algorithm, named HWK-Sets, based on K-Means, suited for clustering data which are variable-sized sets of elementary items. Clustering sets is difficult because data objects do not have numerical attributes and it is not possible to use the classical Euclidean distance upon which K-Means is normally based. An adaptation of the Jaccard distance between sets is used, which exploits application-sensitive information. More in particular, the Hartigan and Wong variation of K-Means is adopted which uses medoids as cluster representatives, can work with several seeding methods and can favor the fast attainment of a careful solution. The paper introduces HWK-Sets which is implemented in Java by parallel streams. Then, the efficiency and accuracy of HWK-Sets are demonstrated by simulation experiments
An Efficient Algorithm for Clustering Sets
Nigro, Libero
Membro del Collaboration Group
;Cicirelli, FrancoMembro del Collaboration Group
2023-01-01
Abstract
This paper proposes an algorithm, named HWK-Sets, based on K-Means, suited for clustering data which are variable-sized sets of elementary items. Clustering sets is difficult because data objects do not have numerical attributes and it is not possible to use the classical Euclidean distance upon which K-Means is normally based. An adaptation of the Jaccard distance between sets is used, which exploits application-sensitive information. More in particular, the Hartigan and Wong variation of K-Means is adopted which uses medoids as cluster representatives, can work with several seeding methods and can favor the fast attainment of a careful solution. The paper introduces HWK-Sets which is implemented in Java by parallel streams. Then, the efficiency and accuracy of HWK-Sets are demonstrated by simulation experimentsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.