The geometrical description of the components of rubble masonries constitutes a key-point in the definition of their mechanical response. A variational autoencoder (VAE) is proposed as a tool for the automatic description and generation of rubble masonry geometries. The encoder and the decoder forming the VAE are implemented by defining two convolutional neural networks trained by using binary images extracted from a publicly available masonry database.

Automatic Description of Rubble Masonry Geometries by Machine Learning Based Approach

Bilotta A.
;
2023-01-01

Abstract

The geometrical description of the components of rubble masonries constitutes a key-point in the definition of their mechanical response. A variational autoencoder (VAE) is proposed as a tool for the automatic description and generation of rubble masonry geometries. The encoder and the decoder forming the VAE are implemented by defining two convolutional neural networks trained by using binary images extracted from a publicly available masonry database.
2023
978-981-99-3678-6
978-981-99-3679-3
Machine learning approach
Rubble masonry geometries
VAE
Variational autoencoder
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/361018
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact