In this paper we focus on prediction of health status of patients from the historical Electronic Health Records (EHR). We propose a multi-task framework that can monitor the multiple status of diagnoses. Patients’ historical records are fed into a Recurrent Neural Network (RNN) which memorizes all the past visit information, and then a task-specific layer is trained to predict multiple diagnoses. Experimental results show that prediction accuracy is reliable if compared to widely used approaches 1.

An Attention-based Recurrent Neural Networks Framework for Health Data Analysis

Veltri P.
2018-01-01

Abstract

In this paper we focus on prediction of health status of patients from the historical Electronic Health Records (EHR). We propose a multi-task framework that can monitor the multiple status of diagnoses. Patients’ historical records are fed into a Recurrent Neural Network (RNN) which memorizes all the past visit information, and then a task-specific layer is trained to predict multiple diagnoses. Experimental results show that prediction accuracy is reliable if compared to widely used approaches 1.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/362571
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact