For many decades fossil and recent microbial mediated carbonates, that include the oldest evidence of life on Earth (stromatolites), were the focus of numerous studies. Recently these bio-sedimentary systems inspired an innovative approach to produce sustainable biomaterials, to reduce the harmful impact on the natural environment due to industrial activities, such as microbially induced Ca-carbonate precipitate (MICP). MICP has been studied for many applications including environmental remediation, production of construction material, cations removal in wastewater, and carbon sequestration. With the aim to develop a bio-cement for increasing the geotechnical properties of a common multimineral sand, a more sustainable process of MICP was tested introducing the sand in the water flow of a tufa-forming river with active microbial Ca-carbonate deposition. The tufa deposits are covered by a lithifying biofilm composed of a microbial community including autotrophic and heterotrophic bacteria, algae, viruses, and extracellular polymeric substances. Biominerals forming the tufa deposit replace the organic substrates starting with an amorphous phase rich in Ca, Si, and other cations, followed by massive precipitation of fibrous to polyhedral Ca-carbonate crystals and subordinately lamellar/fibrous Mg-clay crystals. During the 16 weeks of the experiment, the biofilm colonized rapidly all the surface of the sand grains, which were gradually encrusted by neoformed Ca-carbonate biominerals showing the same crystal structures and composition of those forming the tufa deposit. Moreover, the sand showed a progressive increase of the internal friction angle from 28.6° to 35.4°, with a trend very similar to MICP lab experiments that used a single bacterial species. This suggests that is possible to use natural Ca-carbonate biominerals, induced by natural microbial communities, for engineering applications with very sustainable procedures.

MICROBIALLY MEDIATED CA-CARBONATE PRECIPITATION IN TUFA FLUVIAL SYSTEM: AN INNOVATIVE APPROACH TO DEVELOP A NEW GENERATION OF SUSTAINABLE BIO-INSPIRED MATERIALS

Edoardo Perri;Mario Borrelli;Maurizio Ponte
2023-01-01

Abstract

For many decades fossil and recent microbial mediated carbonates, that include the oldest evidence of life on Earth (stromatolites), were the focus of numerous studies. Recently these bio-sedimentary systems inspired an innovative approach to produce sustainable biomaterials, to reduce the harmful impact on the natural environment due to industrial activities, such as microbially induced Ca-carbonate precipitate (MICP). MICP has been studied for many applications including environmental remediation, production of construction material, cations removal in wastewater, and carbon sequestration. With the aim to develop a bio-cement for increasing the geotechnical properties of a common multimineral sand, a more sustainable process of MICP was tested introducing the sand in the water flow of a tufa-forming river with active microbial Ca-carbonate deposition. The tufa deposits are covered by a lithifying biofilm composed of a microbial community including autotrophic and heterotrophic bacteria, algae, viruses, and extracellular polymeric substances. Biominerals forming the tufa deposit replace the organic substrates starting with an amorphous phase rich in Ca, Si, and other cations, followed by massive precipitation of fibrous to polyhedral Ca-carbonate crystals and subordinately lamellar/fibrous Mg-clay crystals. During the 16 weeks of the experiment, the biofilm colonized rapidly all the surface of the sand grains, which were gradually encrusted by neoformed Ca-carbonate biominerals showing the same crystal structures and composition of those forming the tufa deposit. Moreover, the sand showed a progressive increase of the internal friction angle from 28.6° to 35.4°, with a trend very similar to MICP lab experiments that used a single bacterial species. This suggests that is possible to use natural Ca-carbonate biominerals, induced by natural microbial communities, for engineering applications with very sustainable procedures.
2023
978-88-8305-196-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/363238
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact