In a number of different fields, including Engeneering, Chemistry and Physics, the design of technological tools and device structures is increasingly supported by deep-learning based methods, which provide suggestions on crucial architectural choices based on the properties that these tools and structures should exhibit. The paper proposes a novel architecture, named GIDnet, to address this inverse design problem, which is based on exploring a suitably defined latent space associated with the possible designs. Among its distinguishing features, GIDnet is capable of identifying the most appropriate starting point for the exploration and of likely converging into a point corresponding to a design that is a feasible one. Results of a thorough experimental activity evidence that GIDnet outperforms earlier approaches in the literature.

GIDnets: Generative Neural Networks for Solving Inverse Design Problems via Latent Space Exploration

Adornetto C.;Greco G.
2023-01-01

Abstract

In a number of different fields, including Engeneering, Chemistry and Physics, the design of technological tools and device structures is increasingly supported by deep-learning based methods, which provide suggestions on crucial architectural choices based on the properties that these tools and structures should exhibit. The paper proposes a novel architecture, named GIDnet, to address this inverse design problem, which is based on exploring a suitably defined latent space associated with the possible designs. Among its distinguishing features, GIDnet is capable of identifying the most appropriate starting point for the exploration and of likely converging into a point corresponding to a design that is a feasible one. Results of a thorough experimental activity evidence that GIDnet outperforms earlier approaches in the literature.
2023
Experimental methodology, Machine Learning, Autoencoders
File in questo prodotto:
File Dimensione Formato  
IJCAI2023.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/380171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact