Weconsider a dynamic coverage scenario, where a group of agents (e.g., Unmanned Aerial Vehicles (UAVs)) is exploring an environment in search of a moving target (e.g., survivors on a lifeboat). We assume UAVs are capable to achieve, maintain, and move in formation (e.g., to maintain connectivity). This paper addresses the question “Which formation maximizes the chance of finding the target?”. We propose a mathematical framework to answer this question. The proposed framework is generic and can be easily applied to various formations and missions. We show how the framework can identify which formation will result in better performance in the type of missions we consider. We analyze how different factors, namely the target speed relative to the group, affect the performance of the formations. We validate the framework against simulations of the considered scenarios. The supplementary video material including the real-world implementation is available at https://youtu.be/ mYmTnAJi-I?si=dSmVVNZOjj5NbSG1.
Formation Analysis for a Fleet of Drones: A Mathematical Framework
Natalizio E.
2025-01-01
Abstract
Weconsider a dynamic coverage scenario, where a group of agents (e.g., Unmanned Aerial Vehicles (UAVs)) is exploring an environment in search of a moving target (e.g., survivors on a lifeboat). We assume UAVs are capable to achieve, maintain, and move in formation (e.g., to maintain connectivity). This paper addresses the question “Which formation maximizes the chance of finding the target?”. We propose a mathematical framework to answer this question. The proposed framework is generic and can be easily applied to various formations and missions. We show how the framework can identify which formation will result in better performance in the type of missions we consider. We analyze how different factors, namely the target speed relative to the group, affect the performance of the formations. We validate the framework against simulations of the considered scenarios. The supplementary video material including the real-world implementation is available at https://youtu.be/ mYmTnAJi-I?si=dSmVVNZOjj5NbSG1.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


