Threat assessment of systems is critical to organizations' security policy. Identifying systems likely to be at-risk by threat actors can help organizations better defend against likely cyber attacks. Currently, identifying such systems to a large extent is guided by the Common Vulnerability Scoring System (CVSS). Previous research has demonstrated poor correlation between a high CVSS score and at-risk systems. In this paper, we look at hacker discussions on darkweb marketplaces and forums to identify the platforms, vendors, and products likely to be at-risk by hackers. We propose a reasoning system that combines DeLP (Defeasible Logic Programming) and machine learning classifiers to identify systems based on hacker discussions observed on the darkweb. The resulting system is therefore a hybrid between classical knowledge representation and reasoning techniques and machine learning classifiers. We evaluate the system on hacker discussions collected from nearly 300 darkweb forums and marketplaces provided by a threat intelligence company. We improved precision by 15%-57% while maintaining recall over baseline approaches.

At-risk system identification via analysis of discussions on the darkweb

Simari G. I.
2018-01-01

Abstract

Threat assessment of systems is critical to organizations' security policy. Identifying systems likely to be at-risk by threat actors can help organizations better defend against likely cyber attacks. Currently, identifying such systems to a large extent is guided by the Common Vulnerability Scoring System (CVSS). Previous research has demonstrated poor correlation between a high CVSS score and at-risk systems. In this paper, we look at hacker discussions on darkweb marketplaces and forums to identify the platforms, vendors, and products likely to be at-risk by hackers. We propose a reasoning system that combines DeLP (Defeasible Logic Programming) and machine learning classifiers to identify systems based on hacker discussions observed on the darkweb. The resulting system is therefore a hybrid between classical knowledge representation and reasoning techniques and machine learning classifiers. We evaluate the system on hacker discussions collected from nearly 300 darkweb forums and marketplaces provided by a threat intelligence company. We improved precision by 15%-57% while maintaining recall over baseline approaches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/386187
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact