In this paper we consider a hybrid possibilistic-probabilistic alternative approach to Probabilistic Preference Logic Networks (PPLNs). Namely, we first adopt a possibilistic model to represent the beliefs about uncertain strict preference statements, and then, by means of a pignistic probability transformation, we switch to a probabilistic-based credulous inference of new preferences for which no explicit (or transitive) information is provided. Finally, we provide a tractable approximate method to compute these probabilities.
Inferring quantitative preferences: Beyond logical deduction
Martinez M. V.;Simari G. I.
2018-01-01
Abstract
In this paper we consider a hybrid possibilistic-probabilistic alternative approach to Probabilistic Preference Logic Networks (PPLNs). Namely, we first adopt a possibilistic model to represent the beliefs about uncertain strict preference statements, and then, by means of a pignistic probability transformation, we switch to a probabilistic-based credulous inference of new preferences for which no explicit (or transitive) information is provided. Finally, we provide a tractable approximate method to compute these probabilities.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


