The selection of cuts to be added to the current LP relaxation is one of the most critical task in Branch-and-Cut methods, since it strongly affects the performances of the algorithm. Recently, machine learning techniques have become popular to define effective cut selection strategies. In this paper we explore the possibility of selecting cuts by ranking them via support vector regression.

Machine Learning Techniques for Branch-and-Cut Methods: The Selection of Cutting Planes

Giallombardo, Giovanni;Miglionico, Giovanna;Sammarra, Marcello
2025-01-01

Abstract

The selection of cuts to be added to the current LP relaxation is one of the most critical task in Branch-and-Cut methods, since it strongly affects the performances of the algorithm. Recently, machine learning techniques have become popular to define effective cut selection strategies. In this paper we explore the possibility of selecting cuts by ranking them via support vector regression.
2025
9783031812408
9783031812415
integer linear programs
machine learning
regression
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/392257
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact