Two proper polynomial maps $f_1, f_2 \colon \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ are said to be \emph{equivalent} if there exist $\Phi_1, \Phi_2 \in \textrm{Aut}(\mathbb{C}^2)$ such that $f_2=\Phi_2 \circ f_1 \circ \Phi_1$. We investigate proper polynomial maps of arbitrary topological degree $d \geq 2$ up to equivalence. Under the further assumption that the maps are Galois coverings we also provide the complete description of equivalence classes. This widely extends previous results obtained by Lamy in the case $d=2$.

On proper polynomial maps of C^2

POLIZZI, Francesco
2010-01-01

Abstract

Two proper polynomial maps $f_1, f_2 \colon \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ are said to be \emph{equivalent} if there exist $\Phi_1, \Phi_2 \in \textrm{Aut}(\mathbb{C}^2)$ such that $f_2=\Phi_2 \circ f_1 \circ \Phi_1$. We investigate proper polynomial maps of arbitrary topological degree $d \geq 2$ up to equivalence. Under the further assumption that the maps are Galois coverings we also provide the complete description of equivalence classes. This widely extends previous results obtained by Lamy in the case $d=2$.
2010
Complex affine plane; Proper polynomial map
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/123169
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact