Two proper polynomial maps $f_1, f_2 \colon \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ are said to be \emph{equivalent} if there exist $\Phi_1, \Phi_2 \in \textrm{Aut}(\mathbb{C}^2)$ such that $f_2=\Phi_2 \circ f_1 \circ \Phi_1$. We investigate proper polynomial maps of arbitrary topological degree $d \geq 2$ up to equivalence. Under the further assumption that the maps are Galois coverings we also provide the complete description of equivalence classes. This widely extends previous results obtained by Lamy in the case $d=2$.
On proper polynomial maps of C^2
POLIZZI, Francesco
2010-01-01
Abstract
Two proper polynomial maps $f_1, f_2 \colon \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ are said to be \emph{equivalent} if there exist $\Phi_1, \Phi_2 \in \textrm{Aut}(\mathbb{C}^2)$ such that $f_2=\Phi_2 \circ f_1 \circ \Phi_1$. We investigate proper polynomial maps of arbitrary topological degree $d \geq 2$ up to equivalence. Under the further assumption that the maps are Galois coverings we also provide the complete description of equivalence classes. This widely extends previous results obtained by Lamy in the case $d=2$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.