We investigate the critical properties of the two-dimensional Z(5) vector model. For this purpose, we propose a cluster algorithm, valid for Z(N) models with odd values of N. The two-dimensional Z(5) vector model is conjectured to exhibit two phase transitions with a massless intermediate phase. We locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices and compare the results with analytical predictions.

Numerical study of the phase transitions in the two-dimensional Z(5) vector model

PAPA, Alessandro
2011-01-01

Abstract

We investigate the critical properties of the two-dimensional Z(5) vector model. For this purpose, we propose a cluster algorithm, valid for Z(N) models with odd values of N. The two-dimensional Z(5) vector model is conjectured to exhibit two phase transitions with a massless intermediate phase. We locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices and compare the results with analytical predictions.
Spin models; BKT phase transition; Critical indices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/124082
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact