The catalytic mechanism of peptide deformylase enzymes containing zinc, iron, cobalt, and nickel dications was explored in the gas phase and in the protein environment. The study was performed at the density functional level using three model systems to simulate the active site. The work had the aim to evaluate the effect of metal substitution on the hydrolytic properties and the possible different performances of the various catalysts. Results indicated that all of the metallic forms are active to hydrolyze the formyl−peptide bond and that the reaction pathways do not show significant peculiarities on going from a particular metal ion to another. No significant modification of the reaction paths occurs in solvent.

Role of the metal ion in formyl-peptide bond hydrolysis by a peptide deformylase active site model

RUSSO, Nino;TOSCANO, Marirosa
2006-01-01

Abstract

The catalytic mechanism of peptide deformylase enzymes containing zinc, iron, cobalt, and nickel dications was explored in the gas phase and in the protein environment. The study was performed at the density functional level using three model systems to simulate the active site. The work had the aim to evaluate the effect of metal substitution on the hydrolytic properties and the possible different performances of the various catalysts. Results indicated that all of the metallic forms are active to hydrolyze the formyl−peptide bond and that the reaction pathways do not show significant peculiarities on going from a particular metal ion to another. No significant modification of the reaction paths occurs in solvent.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/124948
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact