This paper investigates the linear fractional shortest path problem with time windows. For the specific problem, an elementary path with a minimum cost/time ratio is sought in a directed graph, where two parameters (i.e. cost and time) are associated with each arc and a time window is associated with each node. Indeed, a valid path must satisfy the time window constraints, which are assumed to be of the hard type. Multi-dimensional labelling algorithms are proposed to solve this variant of the classical shortest path problem. Extensive computational tests are carried out on a meaningful number of test problems, with the goal of assessing the behaviour of the proposed approaches. The computational study shows that the introduction of dominance rules and the adoption of a bi-directional search strategy allow the definition of solution approaches that turn out to be very effective in solving the problem under consideration.

Multi-Dimensional Labelling Approaches to solve the Linear Fractional Elementary Shortest Path Problem with Time Windows

GUERRIERO F;DI PUGLIA PUGLIESE L
2011-01-01

Abstract

This paper investigates the linear fractional shortest path problem with time windows. For the specific problem, an elementary path with a minimum cost/time ratio is sought in a directed graph, where two parameters (i.e. cost and time) are associated with each arc and a time window is associated with each node. Indeed, a valid path must satisfy the time window constraints, which are assumed to be of the hard type. Multi-dimensional labelling algorithms are proposed to solve this variant of the classical shortest path problem. Extensive computational tests are carried out on a meaningful number of test problems, with the goal of assessing the behaviour of the proposed approaches. The computational study shows that the introduction of dominance rules and the adoption of a bi-directional search strategy allow the definition of solution approaches that turn out to be very effective in solving the problem under consideration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/125564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact