A numerical study was undertaken in order to assess the capability of an unsteady RANS code to predict the seakeeping characteristics of a high-speed multi-hull vessel in high sea states. Numerical analysis includes evaluation of ship motions, effects of wave steepness on ship response, catamaran natural frequency and added resistance in waves. Computations were performed for the DELFT 372 catamaran by the URANS solver CFDSHIP-Iowa V.4. The code was validated with encouraging results for high ship speeds (0.3rFnr0.75) and high wave amplitudes (0.025rAkr0.1). Comparison with strip theory solutions shows that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. Current computations evidence that heave peaks occur at resonance for all Fn, and reach the absolute maximum at Fn¼0.75. Maximum pitch occurs at frequencies lower than resonance, for each speed, and absolute maximum occurs at medium Fn¼0.6. Maximum added resistance, Raw, was computed at Fn¼0.45, which, interestingly, is near the catamaran Fncoincidence. Overall, we found similar results as Simonsen et al. (2008) for KCS containership, though, herein, a multi-hull geometry and higher speeds were tested. Also, our results are useful to further evaluate the exciting forces and their correlation with fe and l/Lpp.

Numerical investigation of the seakeeping behavior of a catamaran advancing in regular head waves

CASTIGLIONE T;BOVA, Sergio;
2011-01-01

Abstract

A numerical study was undertaken in order to assess the capability of an unsteady RANS code to predict the seakeeping characteristics of a high-speed multi-hull vessel in high sea states. Numerical analysis includes evaluation of ship motions, effects of wave steepness on ship response, catamaran natural frequency and added resistance in waves. Computations were performed for the DELFT 372 catamaran by the URANS solver CFDSHIP-Iowa V.4. The code was validated with encouraging results for high ship speeds (0.3rFnr0.75) and high wave amplitudes (0.025rAkr0.1). Comparison with strip theory solutions shows that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. Current computations evidence that heave peaks occur at resonance for all Fn, and reach the absolute maximum at Fn¼0.75. Maximum pitch occurs at frequencies lower than resonance, for each speed, and absolute maximum occurs at medium Fn¼0.6. Maximum added resistance, Raw, was computed at Fn¼0.45, which, interestingly, is near the catamaran Fncoincidence. Overall, we found similar results as Simonsen et al. (2008) for KCS containership, though, herein, a multi-hull geometry and higher speeds were tested. Also, our results are useful to further evaluate the exciting forces and their correlation with fe and l/Lpp.
2011
Ship motions; Seakeeping; CFD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/125574
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 73
social impact