Adhesive bonding is a viable alternative to traditional joining systems (e.g., riveting or welding) for a wide class of components belonging to electronic, automotive, and aerospace industries. However, adhesive joints often contain flaws; therefore, the development of such technology requires reliable knowledge of the corresponding fracture properties. In the present paper, the candidate mode I fracture toughness of aluminum/epoxy joints is determined using a double cantilever beam fracture specimen. A proper data reduction scheme for fracture energy calculation has been selected based on the results of a sensitivity analysis. Furthermore, a scanning electron microscope is used in order to explore the locus of failure. Finally, the experimental findings are assessed by means of numerical simulations of crack growth carried out using a cohesive zone model.
Adhesive bonding is a viable alternative to traditional joining systems (e.g., riveting or welding) for a wide class of components belonging to electronic, automotive, and aerospace industries. However, adhesive joints often contain flaws; therefore, the development of such technology requires reliable knowledge of the corresponding fracture properties. In the present paper, the candidate mode I fracture toughness of aluminum/epoxy joints is determined using a double cantilever beam fracture specimen. A proper data reduction scheme for fracture energy calculation has been selected based on the results of a sensitivity analysis. Furthermore, a scanning electron microscope is used in order to explore the locus of failure. Finally, the experimental findings are assessed by means of numerical simulations of crack growth carried out using a cohesive zone model.
Analysis of fracture in aluminum joints bonded with a bi-component epoxy adhesive
ALFANO, Marco;FURGIUELE, Franco;PAGNOTTA, Leonardo;
2011-01-01
Abstract
Adhesive bonding is a viable alternative to traditional joining systems (e.g., riveting or welding) for a wide class of components belonging to electronic, automotive, and aerospace industries. However, adhesive joints often contain flaws; therefore, the development of such technology requires reliable knowledge of the corresponding fracture properties. In the present paper, the candidate mode I fracture toughness of aluminum/epoxy joints is determined using a double cantilever beam fracture specimen. A proper data reduction scheme for fracture energy calculation has been selected based on the results of a sensitivity analysis. Furthermore, a scanning electron microscope is used in order to explore the locus of failure. Finally, the experimental findings are assessed by means of numerical simulations of crack growth carried out using a cohesive zone model.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.