Two compressible magnetohydrodynamics simulations of the reversed-field pinch are performed, with isotropic and anisotropic thermal conductivity. We describe in detail the numerical method we use to reproduce the effect of a large parallel thermal conductivity, which makes magnetic field lines almost isothermal. We compare the results of the two simulations, showing that the anisotropic thermal conductivity causes the formation of a hot island when closed magnetic surfaces exist, while temperature becomes almost uniform when the magnetic field is chaotic. After a transient single-helicity state that is formed in the initial phase, a stationary state is reached where the RFP configuration exists in a multiple helicity state, even though the Hartmann number is below the threshold found in previous simulations for the formation of multiple helicity states.
Role of anisotropic thermal conductivity in the reversed-field pinch dynamics
MALARA, Francesco;VELTRI, Pierluigi
2011-01-01
Abstract
Two compressible magnetohydrodynamics simulations of the reversed-field pinch are performed, with isotropic and anisotropic thermal conductivity. We describe in detail the numerical method we use to reproduce the effect of a large parallel thermal conductivity, which makes magnetic field lines almost isothermal. We compare the results of the two simulations, showing that the anisotropic thermal conductivity causes the formation of a hot island when closed magnetic surfaces exist, while temperature becomes almost uniform when the magnetic field is chaotic. After a transient single-helicity state that is formed in the initial phase, a stationary state is reached where the RFP configuration exists in a multiple helicity state, even though the Hartmann number is below the threshold found in previous simulations for the formation of multiple helicity states.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.