Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
A measurement of the proton structure function F(2)(x, Q(2)) is presented in the kinematic range 0.045 GeV(2) < Q(2) < 0.65 GeV(2) and 6 . 10(-7) < x < 1 . 10(-3). The results were obtained using a data sample corresponding to an integrated luminosity of 3.9 pb(-1) in e(+)p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F(2) are typically less than 4%. At the low Q(2) values of the present measurement, the rise of F(2) at low x is slower than observed in HERA data at higher Q(2) and can be described by Regge theory with a constant logarithmic slope partial derivative lnF(2)/partial derivative ln(1/x). The dependence of F(2) on Q(2) is stronger than at higher Q(2) values, approaching, at the lowest Q(2) values of this measurement, a region where F(2) becomes nearly proportional to Q(2). (C) 2000 Elsevier Science B.V. All rights reserved.
A measurement of the proton structure function F(2)(x, Q(2)) is presented in the kinematic range 0.045 GeV(2) < Q(2) < 0.65 GeV(2) and 6 . 10(-7) < x < 1 . 10(-3). The results were obtained using a data sample corresponding to an integrated luminosity of 3.9 pb(-1) in e(+)p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F(2) are typically less than 4%. At the low Q(2) values of the present measurement, the rise of F(2) at low x is slower than observed in HERA data at higher Q(2) and can be described by Regge theory with a constant logarithmic slope partial derivative lnF(2)/partial derivative ln(1/x). The dependence of F(2) on Q(2) is stronger than at higher Q(2) values, approaching, at the lowest Q(2) values of this measurement, a region where F(2) becomes nearly proportional to Q(2). (C) 2000 Elsevier Science B.V. All rights reserved.
Measurement of the proton structure function F(2) at very low Q(2) at HERA
A measurement of the proton structure function F(2)(x, Q(2)) is presented in the kinematic range 0.045 GeV(2) < Q(2) < 0.65 GeV(2) and 6 . 10(-7) < x < 1 . 10(-3). The results were obtained using a data sample corresponding to an integrated luminosity of 3.9 pb(-1) in e(+)p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F(2) are typically less than 4%. At the low Q(2) values of the present measurement, the rise of F(2) at low x is slower than observed in HERA data at higher Q(2) and can be described by Regge theory with a constant logarithmic slope partial derivative lnF(2)/partial derivative ln(1/x). The dependence of F(2) on Q(2) is stronger than at higher Q(2) values, approaching, at the lowest Q(2) values of this measurement, a region where F(2) becomes nearly proportional to Q(2). (C) 2000 Elsevier Science B.V. All rights reserved.
A measurement of the proton structure function F(2)(x, Q(2)) is presented in the kinematic range 0.045 GeV(2) < Q(2) < 0.65 GeV(2) and 6 . 10(-7) < x < 1 . 10(-3). The results were obtained using a data sample corresponding to an integrated luminosity of 3.9 pb(-1) in e(+)p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F(2) are typically less than 4%. At the low Q(2) values of the present measurement, the rise of F(2) at low x is slower than observed in HERA data at higher Q(2) and can be described by Regge theory with a constant logarithmic slope partial derivative lnF(2)/partial derivative ln(1/x). The dependence of F(2) on Q(2) is stronger than at higher Q(2) values, approaching, at the lowest Q(2) values of this measurement, a region where F(2) becomes nearly proportional to Q(2). (C) 2000 Elsevier Science B.V. All rights reserved.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/126379
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
181
246
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.