An accurate laminate model developed by using multilayer shear deformable plate modeling and interface elements, based on fracture mechanics and contact mechanics, is proposed to analyze mixed mode delamination in composite laminates. Perfect adhesion along the undelaminated portion of the delamination plane is simulated by treating interface stiffnesses as penalty parameters, whereas to enforce interface displacement continuity between plate elements constituting each sub-laminate above or below the delamination plane, the Lagrange multiplier method is used. The governing differential equations are derived through a variational procedure by using a modified total potential energy functional. Results are obtained by numerical integration of the non-linear three-point boundary value problem modeling mixed-mode delamination of the laminate plate subjected to end loading, which accounts also for the frictionless contact condition. The coupling of a penalty procedure with the Lagrange multiplier method, results in an accurate and direct energy release rate evaluation. Comparisons with results available from the literature obtained with a local continuum approach, show that mode partition may be performed to the desired accuracy by refining multilayer plate models for each sub-laminate. In addition, original analytical formulas for mode partition are obtained by coupling the interface approach and fracture mechanics concepts, evidencing the effectiveness of the proposed approach and gaining a better insight into the influence of shear effects on mode decomposition. Numerical computations for practical problems, evidence both the relative simplicity and the efficiency of the proposed model to represent mixed mode interlaminar fracturing as well as crack–face interaction.

A coupled interface-multilayer approach for mixed mode delamination and contact analysis in laminated composites

BRUNO, Domenico;GRECO, Fabrizio;LONETTI, Paolo
2003-01-01

Abstract

An accurate laminate model developed by using multilayer shear deformable plate modeling and interface elements, based on fracture mechanics and contact mechanics, is proposed to analyze mixed mode delamination in composite laminates. Perfect adhesion along the undelaminated portion of the delamination plane is simulated by treating interface stiffnesses as penalty parameters, whereas to enforce interface displacement continuity between plate elements constituting each sub-laminate above or below the delamination plane, the Lagrange multiplier method is used. The governing differential equations are derived through a variational procedure by using a modified total potential energy functional. Results are obtained by numerical integration of the non-linear three-point boundary value problem modeling mixed-mode delamination of the laminate plate subjected to end loading, which accounts also for the frictionless contact condition. The coupling of a penalty procedure with the Lagrange multiplier method, results in an accurate and direct energy release rate evaluation. Comparisons with results available from the literature obtained with a local continuum approach, show that mode partition may be performed to the desired accuracy by refining multilayer plate models for each sub-laminate. In addition, original analytical formulas for mode partition are obtained by coupling the interface approach and fracture mechanics concepts, evidencing the effectiveness of the proposed approach and gaining a better insight into the influence of shear effects on mode decomposition. Numerical computations for practical problems, evidence both the relative simplicity and the efficiency of the proposed model to represent mixed mode interlaminar fracturing as well as crack–face interaction.
2003
Laminates,; Delamination,; Multilayer,; Interface,; Mode partition,; Contact
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/126623
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 42
social impact