Inclusions of metals in the growth process of carbon cluster assembled materials (ns-C) induce modifications in the structural and electronic properties of the material. A novel pulsed microplasma cluster source (PMCS) is able to deliver highly intense, collimated and stable beams suitable for producing bulk quantities of cluster-assembled nanocomposite films. Loading of metal nanoparticles into carbon cluster based films is obtained either by mixing a gas phase metallorganic compound with the carrier gas (He) before entering into the source (for example molybdenum (V) isopropoxide), or by using a double component sputtering target (metal (Ti, Ni)/graphite). The study of film morphology on nanometer scale, carried out by transmission electron microscopy (TEM), reveals the dispersion in a ns-C matrix of metallic particles and, in the case of molybdenum containing films, also of carbide particles. Spatially resolved ultraviolet photoemission spectroscopy confirms the segregation of metal particles and exhibits evident anisotropy in the Mo:ns-C films, mainly ascribable to the formation of carbide nanoparticles.
Morphology and electronic structure of nanostructured carbon films embedding transition metal nanoparticles
AGOSTINO, Raffaele Giuseppe;CARUSO, Tommaso;
2003-01-01
Abstract
Inclusions of metals in the growth process of carbon cluster assembled materials (ns-C) induce modifications in the structural and electronic properties of the material. A novel pulsed microplasma cluster source (PMCS) is able to deliver highly intense, collimated and stable beams suitable for producing bulk quantities of cluster-assembled nanocomposite films. Loading of metal nanoparticles into carbon cluster based films is obtained either by mixing a gas phase metallorganic compound with the carrier gas (He) before entering into the source (for example molybdenum (V) isopropoxide), or by using a double component sputtering target (metal (Ti, Ni)/graphite). The study of film morphology on nanometer scale, carried out by transmission electron microscopy (TEM), reveals the dispersion in a ns-C matrix of metallic particles and, in the case of molybdenum containing films, also of carbide particles. Spatially resolved ultraviolet photoemission spectroscopy confirms the segregation of metal particles and exhibits evident anisotropy in the Mo:ns-C films, mainly ascribable to the formation of carbide nanoparticles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.