This paper provides a discrete time algorithm, in the framework of the Cox–Ross–Rubinstein analysis (1979), to evaluate both Parisian options with a flat barrier and Parisian options with an exponential boundary. The algorithm is based on a combinatorial tool for counting the number of paths of a particle performing a random walk, that remains beyond a barrier constantly for a period strictly smaller than a pre-specified time interval. As a result, a binomial evaluation model is derived that is very easy to implement and that produces highly accurate prices.

A combinatorial approach for pricing Parisian options

COSTABILE, Massimo
2002-01-01

Abstract

This paper provides a discrete time algorithm, in the framework of the Cox–Ross–Rubinstein analysis (1979), to evaluate both Parisian options with a flat barrier and Parisian options with an exponential boundary. The algorithm is based on a combinatorial tool for counting the number of paths of a particle performing a random walk, that remains beyond a barrier constantly for a period strictly smaller than a pre-specified time interval. As a result, a binomial evaluation model is derived that is very easy to implement and that produces highly accurate prices.
2002
Parisian options; binomial trees
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/126730
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact