Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb(-1). The measurements were made in the kinematic range Q(2) < 1 GeV(2), 0.20 < y < 0.85 and x(IP) < 0.025, where Q(2) is the photon virtuality, y is the inelasticity and x(IP) is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E(T)(jet), were required to satisfy E(T)(jet) > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta(jet) < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton. RI Wing, Matthew/C-2169-2008; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011
Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb(-1). The measurements were made in the kinematic range Q(2) < 1 GeV(2), 0.20 < y < 0.85 and x(IP) < 0.025, where Q(2) is the photon virtuality, y is the inelasticity and x(IP) is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E(T)(jet), were required to satisfy E(T)(jet) > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta(jet) < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.
Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb(-1). The measurements were made in the kinematic range Q(2) < 1 GeV(2), 0.20 < y < 0.85 and x(IP) < 0.025, where Q(2) is the photon virtuality, y is the inelasticity and x(IP) is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E(T)(jet), were required to satisfy E(T)(jet) > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta(jet) < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.
Diffractive photoproduction of dijets in ep collisions at HERA
Chekanov S.;Derrick M.;Magill S.;Musgrave B.;Nicholass D.;Repond J.;Yoshida R.;Mattingly M. C. K.;Jechow M.;Pavel N.;Molina A. G. Yaguees;Antonelli S.;Antonioli P.;Bari G.;Basile M.;Bellagamba L.;Bindi M.;Boscherini D.;Bruni A.;Bruni G.;Cifarelli L.;Cindolo F.;Contin A.;Corradi M.;De Pasquale S.;Iacobucci G.;Margotti A.;Nania R.;Polini A.;Sartorelli G.;Zichichi A.;Bartsch D.;Brock I.;Hartmann H.;Hilger E.;Jakob H. P.;Juengst M.;Kind O. M.;Nuncio Quiroz A. E.;Paul E.;Renner R.;Samson U.;Schoenberg V.;Shehzadi R.;Wlasenko M.;Brook N. H.;Heath G. P.;Morris J. D.;CAPUA, Marcella;Fazio S.;MASTROBERARDINO, Anna;Schioppa M.;Susinno G.;TASSI, Enrico;Kim J. Y.;Ibrahim Z. A.;Kamaluddin B.;Abdullah W. A. T. Wan;Ning Y.;Ren Z.;Sciulli F.;Chwastowski J.;Eskreys A.;Figiel J.;Galas A.;Gil M.;Olkiewicz K.;Stopa P.;Zawiejski L.;Adamczyk L.;Bold T.;Grabowska Bold I.;Kisielewska D.;Lukasik J.;Przybycien M.;Suszycki L.;Kotanski A.;Slominski W.;Adler V.;Behrens U.;Blohm C.;Bonato A.;Borras K.;Ciesielski R.;Coppola N.;Drugakov V.;Fang S.;Fourletova J.;Geiser A.;Gladkov D.;Goettlicher P.;Grebenyuk J.;Gregor I.;Haas T.;Hain W.;Huettmann A.;Kahle B.;Katkov I. I.;Klein U.;Koetz U.;Kowalski H.;Lobodzinska E.;Loehr B.;Mankel R.;Melzer Pellmann I. A.;Miglioranzi S.;Montanari A.;Namsoo T.;Notz D.;Rinaldi L.;Roloff P.;Rubinsky I.;Santamarta R.;Schneekloth U.;Spiridonov A.;Szuba D.;Szuba J.;Theedt T.;Wolf G.;Wrona K.;Youngman C.;Zeuner W.;Lohmann W.;Schlenstedt S.;Barbagli G.;Gallo E.;Pelfer P. G.;Bamberger A.;Dobur D.;Karstens F.;Vlasov N. N.;Bussey P. J.;Doyle A. T.;Dunne W.;Forrest M.;Saxon D. H.;Skillicorn I. O.;Gialas I.;Papageorgiu K.;Holm U.;Klanner R.;Lohrmann E.;Schleper P.;Schoerner Sadenius T.;Sztuk J.;Stadie H.;Turcato M.;Foudas C.;Fry C.;Long K. R.;Tapper A. D.;Matsumoto T.;Nagano K.;Tokushuku K.;Yamada S.;Yamazaki Y.;Barakbaev A. N.;Boos E. G.;Pokrovskiy N. S.;Zhautykov B. O.;Aushev V.;Borodin M.;Kozulia A.;Lisovyi M.;Son D.;de Favereau J.;Piotrzkowski K.;Barreiro F.;Glasman C.;Jimenez M.;Labarga L.;del Peso J.;Ron E.;Soares M.;Terron J.;Zambrana M.;Corriveau F.;Liu C.;Walsh R.;Zhou C.;Tsurugai T.;Antonov A.;Dolgoshein B. A.;Sosnovtsev V.;Stifutkin A.;Suchkov S.;Dementiev R. K.;Ermolov P. F.;Gladilin L. K.;Khein L. A.;Korzhavina I. A.;Kuzmin V. A.;Levchenko B. B.;Lukina O. Y.;Proskuryakov A. S.;Shcheglova L. M.;Zotkin D. S.;Zotkin S. A.;Abt I.;Buettner C.;Caldwell A.;Kollar D.;Schmidke W. B.;Sutiak J.;Grigorescu G.;Keramidas A.;Koffeman E.;Kooijman P.;Pellegrino A.;Tiecke H.;Vazquez M.;Wiggers L.;Bruemmer N.;Bylsma B.;Durkin L. S.;Lee A.;Ling T. Y.;Allfrey P. D.;Bell M. A.;Cooper Sarkar A. M.;Devenish R. C. E.;Ferrando J.;Foster B.;Korcsak Gorzo K.;Oliver K.;Patel S.;Roberfroid V.;Robertson A.;Straub P. B.;Uribe Estrada C.;Walczak R.;Bellan P.;Bertolin A.;Brugnera R.;Carlin R.;Dal Corso F.;Dusini S.;Garfagnini A.;Limentani S.;Longhin A.;Stanco L.;Turcato M.;Oh B. Y.;Raval A.;Ukleja J.;Whitmore J. J.;Iga Y.;D'Agostini G.;Marini G.;Nigro A.;Cole J. E.;Hart J. C.;Abramowicz H.;Gabareen A.;Ingbir R.;Kananov S.;Levy A.;Smith O.;Stern A.;Kuze M.;Maeda J.;Hori R.;Kagawa S.;Okazaki N.;Shimizu S.;Tawara T.;Hamatsu R.;Kaji H.;Kitamura S.;Ota O.;Ri Y. D.;Ferrero M. I.;Monaco V.;Sacchi R.;Solano A.;Arneodo M.;Costa M.;Ruspa M.;Fourletov S.;Martin J. F.;Stewart T. P.;Boutle S. K.;Butterworth J. M.;Gwenlan C.;Jones T. W.;Loizides J. H.;Wing M.;Brzozowska B.;Ciborowski J.;Grzelak G.;Kulinski P.;Luzniak P.;Malka J.;Nowak R. J.;Pawlak J. M.;Tymieniecka T.;Ukleja A.;Zarnecki A. F.;Adamus M.;Plucinski P.;Eisenberg Y.;Giller I.;Hochman D.;Karshon U.;Rosin M.;Brownson E.;Danielson T.;Everett A.;Kcira D.;Reeder D. D.;Ryan P.;Savin A. A.;Smith W. H.;Wolfe H.;Bhadra S.;Catterall C. D.;Cui Y.;Hartner G.;Menary S.;Noor U.;Standage J.;Whyte J.
2008-01-01
Abstract
Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb(-1). The measurements were made in the kinematic range Q(2) < 1 GeV(2), 0.20 < y < 0.85 and x(IP) < 0.025, where Q(2) is the photon virtuality, y is the inelasticity and x(IP) is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E(T)(jet), were required to satisfy E(T)(jet) > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta(jet) < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.
Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb(-1). The measurements were made in the kinematic range Q(2) < 1 GeV(2), 0.20 < y < 0.85 and x(IP) < 0.025, where Q(2) is the photon virtuality, y is the inelasticity and x(IP) is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E(T)(jet), were required to satisfy E(T)(jet) > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta(jet) < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton. RI Wing, Matthew/C-2169-2008; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011
Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb(-1). The measurements were made in the kinematic range Q(2) < 1 GeV(2), 0.20 < y < 0.85 and x(IP) < 0.025, where Q(2) is the photon virtuality, y is the inelasticity and x(IP) is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E(T)(jet), were required to satisfy E(T)(jet) > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta(jet) < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/126989
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
69
49
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.