The global existence of smooth solutions of the Cauchy problem for the N-dimensional Euler--Poisson model for semiconductors is established, under the assumption that the initial data is a perturbation of a stationary solution of the drift-diffusion equations with zero electron velocity, which is proved to be unique. The resulting evolutionary solutions converge asymptotically in time to the unperturbed state. The singular relaxation limit is also discussed.

Global existence of smooth solutions of the N-dimensional Euler-Poisson model

ALI', Giuseppe
2004

Abstract

The global existence of smooth solutions of the Cauchy problem for the N-dimensional Euler--Poisson model for semiconductors is established, under the assumption that the initial data is a perturbation of a stationary solution of the drift-diffusion equations with zero electron velocity, which is proved to be unique. The resulting evolutionary solutions converge asymptotically in time to the unperturbed state. The singular relaxation limit is also discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/127335
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 37
social impact