We derive an asymptotic solution of the one-dimensional compressible Euler equations that describe the resonant interaction of small amplitude sound waves with a large amplitude entropy wave. The large entropy variations are assumed to occur only in small regions. We show that the sound wave amplitudes satisfy a two-by-two system of strictly hyperbolic partial differential equations with a quadratic flux.

The Resonant Interaction of Sound Waves with a Large Amplitude Entropy Wave

ALI', Giuseppe;
2000-01-01

Abstract

We derive an asymptotic solution of the one-dimensional compressible Euler equations that describe the resonant interaction of small amplitude sound waves with a large amplitude entropy wave. The large entropy variations are assumed to occur only in small regions. We show that the sound wave amplitudes satisfy a two-by-two system of strictly hyperbolic partial differential equations with a quadratic flux.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/127336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact