Multiwalledcarbonnanotubes (MWCNT) have been synthesized on graphite cathodes by arc discharge in He atmosphere, either by using a catalytic Ni–Cr mixture or without catalysts. A preliminary scanning electron microscopy (SEM) investigation evidences the presence of nanotubes. Raman peaks due to longitudinal optic (LO) modes of linearcarbonchains with sp hybridization (carbyne), encapsulated inside the nanotubes, occur in the wavenumber range 1780–1870 cm− 1, with variable intensity and shapes, in various regions of the analysed samples, together with the typical bands of MWCNT. In some sample zones the Ramanband of carbyne results very strong with respect to G band of the host MWCNT, about one order of magnitude higher than in other studies dealing with carbonchains inside nanotubes. The second order Raman scattering is also observed, with frequency values of 2LO overtones slightly lower than the exact doubling of one phonon peak. No evidence of two-phonon density of state is found for higher frequency, as expected on the basis of existing theoretical predictions. Finally, the temperature dependence of intensity and frequency of carbyne LO modes is studied up to about 1000 K, and their behaviours are consistent with a reversible change of the bond configuration from polyynic to cumulenic character.

Investigations on Raman bands from carbon linear chains in multiwalled carbon nanotubes

CASTRIOTA M;CAPUTI L;CUPOLILLO, Anna;
2008-01-01

Abstract

Multiwalledcarbonnanotubes (MWCNT) have been synthesized on graphite cathodes by arc discharge in He atmosphere, either by using a catalytic Ni–Cr mixture or without catalysts. A preliminary scanning electron microscopy (SEM) investigation evidences the presence of nanotubes. Raman peaks due to longitudinal optic (LO) modes of linearcarbonchains with sp hybridization (carbyne), encapsulated inside the nanotubes, occur in the wavenumber range 1780–1870 cm− 1, with variable intensity and shapes, in various regions of the analysed samples, together with the typical bands of MWCNT. In some sample zones the Ramanband of carbyne results very strong with respect to G band of the host MWCNT, about one order of magnitude higher than in other studies dealing with carbonchains inside nanotubes. The second order Raman scattering is also observed, with frequency values of 2LO overtones slightly lower than the exact doubling of one phonon peak. No evidence of two-phonon density of state is found for higher frequency, as expected on the basis of existing theoretical predictions. Finally, the temperature dependence of intensity and frequency of carbyne LO modes is studied up to about 1000 K, and their behaviours are consistent with a reversible change of the bond configuration from polyynic to cumulenic character.
2008
nanotubes; carbon chains
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/128083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact