We present a numerical study of the kinetic dynamics of protons and alpha particles during the evolution of the solar-wind turbulent cascade, in which the energy injected in large-scale slab-type Alfvenic fluctuations is transferred toward short spatial scale lengths, across the proton skin depth. We make use of a hybrid Vlasov-Maxwell code that integrates numerically the Vlasov equation for both the ion species, while the electrons are considered as a fluid. The system evolution is investigated in terms of different values of the electron to proton and alpha particle to proton temperature ratios. The numerical results show that the previously studied kinetic dynamics of protons is not strongly affected by the presence of alpha particles, at least when they are present in low concentration. Our simulations not only provide a physical explanation for the generation of beams of accelerated particles along the direction of the ambient magnetic field for both protons and alpha particles, but also show that this mechanism is more efficient for protons than for alpha particles, in agreement with recent solar-wind data analyses.
The Role of Alpha Particles in the Evolution of the Solar-wind Turbulence toward Short Spatial Scales
VALENTINI, Francesco;VELTRI, Pierluigi
2011-01-01
Abstract
We present a numerical study of the kinetic dynamics of protons and alpha particles during the evolution of the solar-wind turbulent cascade, in which the energy injected in large-scale slab-type Alfvenic fluctuations is transferred toward short spatial scale lengths, across the proton skin depth. We make use of a hybrid Vlasov-Maxwell code that integrates numerically the Vlasov equation for both the ion species, while the electrons are considered as a fluid. The system evolution is investigated in terms of different values of the electron to proton and alpha particle to proton temperature ratios. The numerical results show that the previously studied kinetic dynamics of protons is not strongly affected by the presence of alpha particles, at least when they are present in low concentration. Our simulations not only provide a physical explanation for the generation of beams of accelerated particles along the direction of the ambient magnetic field for both protons and alpha particles, but also show that this mechanism is more efficient for protons than for alpha particles, in agreement with recent solar-wind data analyses.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.