Human serum albumin (HSA) has been spin-labelled with stearic acids having the nitroxide moiety attached to the hydrocarbon chain either at the 5th or at the 16th carbon atom (n-SASL, n=5 and 16, respectively) with respect to the carboxyl groups. Its interaction with sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) mixed with submicellar content of poly(ethylene glycol:2000)-grafted dipalmitoyl phosphatidylethanolamine (PEG:2000-DPPE) has been studied by conventional electron spin resonance (ESR) spectroscopy. In the absence of bilayer membranes, the ESR spectra of nitroxide stearic acids non-covalently bound to HSA are single component powder patterns, indicative of spin labels undergoing temperature dependent anisotropic motion in the slow motional regime on the conventional ESR timescale. The adsorption of HSA to DPPC bilayers results in two component ESR spectra. Indeed, superimposed to an anisotropic protein-signal appears a more isotropic signal due to the labels in the lipid environment. This accounts for the transfer of fatty acids from the protein to DPPC bilayers. Two spectral components with different rotational mobility are also singled out in the spectra of n-SASL bound to HSA when DPPC/PEG:2000-DPPE mixtures are present in the dispersion medium. The fraction, f(L)(16-SASL), of spin labels transferred from the protein to lipid/polymer-lipid lamellar membranes has been quantified performing spectral subtraction. It is found that fL(16-SASL) decreases on increasing the content of the polymer-lipid mixed with DPPC. It is strongly reduced in the low-density mushroom regime and levels off in the high-density brush regime of the polymer-lipid content as a result of the steric stabilization exerted by the PEG-lipids. Moreover, the fraction of transferred fatty acids from HSA to SSL is dependent on the physical state of the lipid bilayers. It progressively increases with increasing the temperature from the gel to the liquid-crystalline lamellar phases of the mixed lipid/polymer-lipid membranes, although such a dependence is much weaker in the brush regime.

Transfer of stearic acids from albumin to polymer-grafted lipid containing membranes probed by spin-label electron spin resonance / Pantusa, M.; Sportelli, Luigi; Bartucci, R.. - In: BIOPHYSICAL CHEMISTRY. - ISSN 0301-4622. - 114(2005), pp. 121-127.

Transfer of stearic acids from albumin to polymer-grafted lipid containing membranes probed by spin-label electron spin resonance

SPORTELLI, Luigi;BARTUCCI R.
2005

Abstract

Human serum albumin (HSA) has been spin-labelled with stearic acids having the nitroxide moiety attached to the hydrocarbon chain either at the 5th or at the 16th carbon atom (n-SASL, n=5 and 16, respectively) with respect to the carboxyl groups. Its interaction with sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) mixed with submicellar content of poly(ethylene glycol:2000)-grafted dipalmitoyl phosphatidylethanolamine (PEG:2000-DPPE) has been studied by conventional electron spin resonance (ESR) spectroscopy. In the absence of bilayer membranes, the ESR spectra of nitroxide stearic acids non-covalently bound to HSA are single component powder patterns, indicative of spin labels undergoing temperature dependent anisotropic motion in the slow motional regime on the conventional ESR timescale. The adsorption of HSA to DPPC bilayers results in two component ESR spectra. Indeed, superimposed to an anisotropic protein-signal appears a more isotropic signal due to the labels in the lipid environment. This accounts for the transfer of fatty acids from the protein to DPPC bilayers. Two spectral components with different rotational mobility are also singled out in the spectra of n-SASL bound to HSA when DPPC/PEG:2000-DPPE mixtures are present in the dispersion medium. The fraction, f(L)(16-SASL), of spin labels transferred from the protein to lipid/polymer-lipid lamellar membranes has been quantified performing spectral subtraction. It is found that fL(16-SASL) decreases on increasing the content of the polymer-lipid mixed with DPPC. It is strongly reduced in the low-density mushroom regime and levels off in the high-density brush regime of the polymer-lipid content as a result of the steric stabilization exerted by the PEG-lipids. Moreover, the fraction of transferred fatty acids from HSA to SSL is dependent on the physical state of the lipid bilayers. It progressively increases with increasing the temperature from the gel to the liquid-crystalline lamellar phases of the mixed lipid/polymer-lipid membranes, although such a dependence is much weaker in the brush regime.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/128551
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact